Бактериальный геном состоит из генетических элементов, способных к самостоятельной репликации (син. воспроизведение), т. е. репликонов. Репликонами являются бактериальная хромосома и плазмиды.
Наследственная информация хранится у бактерий в форме последовательности нуклеотидов ДНК, которые определяют последовательность аминокислот в белке. Каждому-белку соответствует свой ген, т. е. дискретный участок на ДНК, отличающийся числом и специфичностью последовательности нуклеотидов.
Геном бактерий имеет модульное строение. Он включает в себя
- хромосому микробной клетки,
- умеренные бактериофаги,
- плазмиды,
- транспозоны и IS-элементы.
В основе поддержания постоянства генома лежит работа ферментов репликации и некоторых систем репарации ДНК.
Изменения генетической информации являются результатом мутации и рекомбинации.
Мутации приводят к изменению имеющейся ДНК клетки, рекомбинации позволяют также использовать и ДНК других клеток и вирусов, поступающих из окружающей среды.
Бактериальная хромосома Бактериальная хромосома представлена одной двухцепочечной молекулой ДНК кольцевой формы. Размеры бактериальной хромосомы у различных представителей царства Pmcaryotae варьируют отЗх 108до2,5х 109 Да, что соответствует 3,2 х 106 нуклеотидных пар (н.п.). Бактериальная хромосома формирует компактный нуклеоид бактериальной клетки. Бактериальная хромосома имеет гаплоидный набор генов. Она кодирует жизненно важные для бактериальной клетки функции.
Плазмиды бактерий
Плазмиды представляют собой двухцепочечные молекулы ДНК размером от 10' до 106 н.п. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преимущества при попадании в неблагоприятные условия существования.
Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:
- устойчивость к антибиотикам;
- образование колицинов;
- продукция факторов патогенности;
- способность к синтезу антибиотических веществ;
- расщепление сложных органических веществ;
- образование ферментов рестрикции и модификации.
Репликацию плазмидной ДНК осуществляет тот же набор ферментов, что и репликацию бактериальной хромосомы, однако репликация плазмид происходит независимо от хромосомы.
Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.
Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.
Для характеристики плазмидных репликонов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регулируется одним и тем же механизмом.
Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.
Некоторые бактериальные плазмиды способны передаваться из одной клетки в другую,
принадлежащую иной таксономической единице. Такие плазмиды называются трансмиссивными (конъюгативными, син.) Трансмиссивность присуща лишь крупным плазмидам, имеющим tra-оперон, в который объединены гены, ответственные за перенос плазмиды. Эти гены кодируют половые пили, которые образуют мостик с клеткой, не содержащей трансмиссивную плазмиду, по которой плазмидная ДНК передается в новую клетку. Этот процесс называется конъюгацией.
![](https://studfile.net/html/2735/431/html_c1pNaqkWfs.lT9U/img-HuVUHZ.png)
Мелкие плазмиды, не несущие tra-гены, не могут передаваться сами по себе, но способны к передаче в присутствии трансмиссивных плазмид, используя их аппарат конъюгации. Такие плазмиды называются мобилизуемыми, а сам процесс — мобилизацией нетрансмиссивной плазмиды.
Особое значение в медицинской микробиологии имеют плазмиды, обеспечивающие устойчивость бактерий к антибиотикам, которые получили название R-плазмид, и плазмиды, обеспечивающие продукцию факторов патогенности, способствующих развитию инфекционного процесса в макроорганизме.
R-плазмиды (resistance — противодействие, англ.) содержат гены, детерминирующие синтез ферментов, разрушающих антибактериальные препараты (например, антибиотики).
В результате наличия такой плазмиды бактериальная клетка становится устойчивой (резистентной) к действию целой группы лекарственных веществ, а иногда и нескольким препаратам. Многие R-плазмиды являются трансмиссивными, распространяясь в популяции бактерий, делая ее недоступной к воздействию антибактериальных препаратов. Бактериальные штаммы, несущие R-плазмиды, очень часто являются этиологическими агентами внутрибольничных инфекций.
Плазмиды, детерминирующие синтез факторов патогенности, в настоящее время обнаружены у многих бактерий, являющихся возбудителями инфекционных заболеваний человека. Патогенность возбудителей шигеллезов, иерсиниозов, чумы, сибирской язвы, иксодового бореллиоза, кишечных эшерихи-озов связана с наличием у них и функционированием плазмид патогенности. Первыми, из этой группы плазмид были определены
Ent-плазмида, определяющая синтез энтеротоксина, и Hly-плазмида, детерминирующая синтез гемолизина у Е. coli.
Некоторые бактериальные клетки содержат плазмиды, детерминирующие синтез бактерицидных по отношению к другим бактериям веществ. Например, некоторые Е. coli владеют Col-плазмидой, определяющей синтез колицинов, обладающих микробоцидной активностью по отношению к колиформным бактериям. Бактериальные клетки, несущие такие плазмиды, обладают преимуществами при заселении экологических ниш.
Плазмиды используются в практической деятельности человека, в частности в генной инженерии, при конструировании специальных рекомбинантных бактериальных штаммов, вырабатывающих в больших количествах биологически активные вещества.
Комментариев нет:
Отправить комментарий