суббота, 27 июня 2020 г.

Строение генома бактерий

Бактериальный геном состоит из генети­ческих элементов, способных к самостоятель­ной репликации (син. воспроизведение), т. е. репликонов. Репликонами являются бактери­альная хромосома и плазмиды.
Наследственная информация хранится у бактерий в форме последовательности нуклеотидов ДНК, которые определяют после­довательность аминокислот в белке. Каждому-белку соответствует свой ген, т. е. дискретный участок на ДНК, отличаю­щийся числом и специфичностью последова­тельности нуклеотидов.
Геном бактерий имеет модульное строение. Он включает в себя
  1. хромосому микробной клетки,
  2. умеренные бактериофаги,
  3. плазмиды,
  4. транспозоны и IS-элементы.
В основе поддержания постоянства генома лежит работа ферментов репликации и некоторых систем репарации ДНК.
Изменения генетической информации являются результатом мутации и рекомбинации.
Мутации приводят к изменению имеющейся ДНК клетки, рекомбинации позволяют также использовать и ДНК других клеток и вирусов, поступающих из окружающей среды.
Бактериальная хромосома Бактериальная хромосома представлена одной двухцепочечной молекулой ДНК кольцевой фор­мы. Размеры бактериальной хромосомы у различных представителей царства Pmcaryotae варьируют отЗх 108до2,5х 109 Да, что соответствует 3,2 х 10нуклеотидных пар (н.п.). Бактериальная хромосома формиру­ет компактный нуклеоид бактериальной клетки. Бактериальная хромосома имеет гаплоидный на­бор генов. Она кодирует жизненно важные для бактериальной клетки функции.

Плазмиды бактерий

Плазмиды представляют собой двухцепочечные молекулы ДНК размером от 10' до 106 н.п. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преиму­щества при попадании в неблагоприятные условия существования.
Среди фенотипических признаков, сооб­щаемых бактериальной клетке плазмидами, можно выделить следующие:
  1. устойчивость к антибиотикам;
  2. образование колицинов;
  3. продукция факторов патогенности;
  4. способность к синтезу антибиотических веществ;
  5. расщепление сложных органических ве­ществ;
  6. образование ферментов рестрикции и модификации.
Репликацию плазмидной ДНК осуществля­ет тот же набор ферментов, что и репликацию бактериальной хромосомы, однако репликация плазмид проис­ходит независимо от хромосомы.
Некоторые плазмиды находятся под стро­гим контролемЭто означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.
Число копий плазмид, находящихся под слабым контролемможет достигать от 10 до 200 на бактериальную клетку.
Для характеристики плазмидных реплико­нов их принято разбивать на группы совмести­мости. Несовместимость плазмид связана с не­способностью двух плазмид стабильно сохра­няться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репли­конов, поддержание которых в клетке регули­руется одним и тем же механизмом.
Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.
Некоторые бактериальные плазмиды спо­собны передаваться из одной клетки в другую, принадлежащую иной таксоно­мической единице. Такие плазмиды назы­ваются трансмиссивными (конъюгативными, син.) Трансмиссивность присуща лишь круп­ным плазмидам, имеющим tra-оперон, в ко­торый объединены гены, ответственные за пе­ренос плазмиды. Эти гены кодируют половые пили, которые образуют мостик с клеткой, не содержащей трансмиссивную плазмиду, по которой плазмидная ДНК передается в новую клетку. Этот процесс называется конъюгацией.
Мелкие плазмиды, не несущие tra-гены, не могут передаваться сами по себе, но способны к передаче в присутствии трансмиссивных плазмид, используя их аппарат конъюгации. Такие плазмиды называются мобилизуемыми, а сам процесс — мобилизацией нетрансмис­сивной плазмиды.
Особое значение в медицинской микроби­ологии имеют плазмиды, обеспечивающие устойчивость бактерий к антибиотикам, ко­торые получили название R-плазмид, и плаз­миды, обеспечивающие продукцию факторов патогенности, способствующих развитию ин­фекционного процесса в макроорганизме.
R-плазмиды (resistance — противодействие, англ.) содержат гены, детерминирующие син­тез ферментов, разрушающих антибактери­альные препараты (например, антибиотики).
В результате наличия такой плазмиды бакте­риальная клетка становится устойчивой (резис­тентной) к действию целой группы лекарствен­ных веществ, а иногда и нескольким препаратам. Многие R-плазмиды являются трансмиссивными, распространяясь в популяции бактерий, делая ее недоступной к воздействию антибактериальных препаратов. Бактериальные штаммы, несущие R-плазмиды, очень часто являются этиологическими агентами внутрибольничных инфекций.
Плазмиды, детерминирующие синтез фак­торов патогенности, в настоящее время об­наружены у многих бактерий, являющихся возбудителями инфекционных заболеваний человека. Патогенность возбудителей шигеллезов, иерсиниозов, чумы, сибирской язвы, иксодового бореллиоза, кишечных эшерихи-озов связана с наличием у них и функциони­рованием плазмид патогенности. Первыми, из этой группы плазмид были определены
Ent-плазмида, определяющая синтез энтеротоксина, и Hly-плазмида, детерминирующая синтез гемолизина у Е. coli.
Некоторые бактериальные клетки содержат плазмиды, детерминирующие синтез бакте­рицидных по отношению к другим бактериям веществ. Например, некоторые Е. coli вла­деют Col-плазмидой, определяющей синтез колицинов, обладающих микробоцидной ак­тивностью по отношению к колиформным бактериям. Бактериальные клетки, несущие такие плазмиды, обладают преимуществами при заселении экологических ниш.
Плазмиды используются в практической деятельности человека, в частности в генной инженерии, при конструировании специаль­ных рекомбинантных бактериальных штам­мов, вырабатывающих в больших количествах биологически активные вещества.


Комментариев нет:

Отправить комментарий